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Summary

Material parameters (inert and fatigue) are obtained from
naturally flawed specimens. If the inert strength parameters
characterizing the two-parameter Weibull cumulative distribu-
tion function are known, the fatigue parameters for the power,
Paris, and Walker subcritical crack growth equations can be
obtained from the appropriate rupture data of standard uniaxial
test specimens loaded in static, dynamic, or cyclic fatigue.
Equations are developed for fatigue parameter analysis using
the least-squares best-fit and/or the maximum likelihood esti-
mation method. When the inert parameters are unknown and
only subcritical crack growth rupture data are available, the
material parameters defining the specimen'’s cumulative distri-
bution function are obtained via the median deviation method.
Example problems are included.

Introduction

The objective of this report is to introduce a number of
techniques to obtain the necessary material parameters fora time-
dependent reliability analysis of monolithic structural ceramic
components. These parameters (inert and fatigne) are evaluated
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from fast-fracture and time-dependent stress rupture data of
uniaxially loaded test specimens. Ideally, the data are obtained
under conditions representative of the service environment.

Static, dynamic, and/or cyclic fatigue loading result in a
phenomenon called subcritical crack growth (SCG). Static
fatigue is defined as the application of a constant load over a
period of time. Dynamic fatigue is the application of a constant
stress rate over a period of time, and cyclic fatigue is the
repeated application of a loading sequence. Under tensile
loading, SCG inifiates at existing flaws and continues until a
flaw reaches a critical length, causing catastrophic failure.
Various laws such as the power (ref. 1), Paris (ref. 2), and
Walker (ref. 3) are used to describe SCG. These laws are
usually obtained from mode I laboratory tests of an introduced
crack of known geometry. An uncertainty is involved in relat-
ing these results to abody containing a random distribution and
orientation of inherent flaws of varied geometry and their
interaction under mixed-mode loading. Parameters of'the vari-
ous SCG flaws, derived from naturally flawed test specimens,
tend to compensate for these uncertainties, leading to better
agreement between prediction and experimental data.

For the power, Paris, and Walker laws, analytical methods
are derived to estimate the material parameters for volume
flaws. Analogous equations are obtained for the condition



where surface flaws are dominant. Using the least-squares
best-fit (LSBF), the median deviation (MD), and the maximum
likelihood estimation (MLE) methods, equations are devel-
oped for material parameter estimation. The Theoretical Devel-
opment section consists of a brief development of background
equations for each of the SCG laws, followed by descriptive
techniques for estimating the parameters.

Two example problems are given in the section Experi-
mental Applications. Data from soda lime glass ring-on-
ring and sintered alpha silicon carbide (SASC) C-ring and
O-ring specimens (refs. 4 and 5 and Nemeth, N.N. et al.:
CARES/LIFE Ceramic Analysis and Reliability Evaluation
of Structures Life Prediction Program. NASA Lewis Re-
search Center, unpublished data, 1993.) are used to illus-
trate the application of some of the methods derived herein.

Symbols

A material fatigue parametér (power law)
A,  effective area (fast fracture)

A of effective area (subcritical crack growth)
A méterial fatigue parameter (Paris law)

a crack half-length

B fatigue constant

C function dependent on model and value of probability of
failure

exp Naperian base

g g-factor for cyclic load conversion (eq. (8))
H step function

h ring-on-ring specimen thickness

K stress intensity factor

€én  natural logarithm

m Weibull modulus

N fatigue exponent

n number of cycles

P applied load

P, probability of failure

o Walker law fatigue parameter

R ratio of minimum to maximum effective stress in a
loading cycle

R;  inner specimen radius

R,  outer specimen radius

R,  diagonal half-length (fig. 1)

r ring-on-ring radial location

S variate in equation (70)

T time interval for one load cycle

t time

\%4 volume

V,  effective volume (fast fracture)

Vef effective volume (subcritical crack growth)

x,y,z Cartesian coordinate locations

Y geometric crack shape factor
parameter assoicated with MLE (eq. (70))

r gamma function

v Poisson's ratio

o stress

el stress rate

0, Weibull scale factor

O characteristic strength

¥  represents location (x,y,z) of equivalent stress within the
body

¥, represents location (xy.yy.2p) of maximum tensile
principal stress within the body

Subscripts:

c cyclic



f fracture

I mode 1

Ic mode I critical

leq  mode I equivalent

ij . subscripts denote it () datum in data set
£ step function time switch
max maximum

min minimum

r radial

s surface

T transformed

tan  tangential

u uniaxial
v volume
w Weibull

0.5 denotes median value

1 maximum principal

Theoretical Development

The lifetime reliability of a structural ceramic component
depends on the material's inert parameters (m, ©,) and the
fatigue parameters (N, B) which characterize subcritical crack
growth. Material parameter estimation methods are developed
for the power, Paris, and Walker equations. The power law
expresses the crack growth increment per unit time, whereas
the Paris and Walker models express the crack growth incre-
ment per cycle. The analytical relationships in this section have
been derived for volume flaws; analogous relations are obtained
for the case where surface flaws dominate.-

Power Law

Analysis. —Dynamic or cyclic fatigue stress in conjunction
with the power law is transformed into an equivalent static
stress through the use of g-factors. Implicit in this conversion
isthe assumption that over the same time interval the equivalent

static stress will cause the same crack growth as the dynamic or
cyclic stress (ref. 6).

For the umamal case, the crack growth is expressed as
da/dt = AK . For volume flaws the general case is

da(?,1) g
=4 K,eq (%.1) 1))

where a is the half-crack length; Wis the location point; ¢ is the
time; A is the material fatigue parameter; K leg 1s the mode 1
equivalent stress intensity factor; and N, is the volume fatigue
exponent.

The term K, " is defined as

Ky, =0,,,(F,0Ja(®,1) 2

where o}, q is the mode I equivalent stress and Y'is the geometric
crack shape parameter.

Rearranging equation (2) and solving for the crack half-
length yields

K 2
a(¥,1) =(—Y’~) 072 (P.0) @)

where K] is the mode I critical stress intensity factor and oy, ,
is the equivalent stress at time . From equations (1) to (3), the
equivalent stress distribution at a failure time ¢,is transformed-
to its inert effective stress distribution o, 20 (P attimet=0
(refs. 7 and 8):

(N, —2)

f
j Gleq(lp Ll Z(T,tf) @)

O'qu 0 F)=|"—a* O'qu

where Oleq,0 (0 is the same as O'qu('f’t) and the fatigue
constant B 18

2
- 5
g AYK (N, -2) ®

‘When the initial flaw size is much smaller than the flaw size at
failure and the fatigue parameter N, is large, as is the case for
ceramics, equation (4) reduces to



1/(N,-2)
jfcleq(‘l’ t)dt
Oleqo(F)= (6)

Next follows an analysis of static and cyclic fatigue. Satisfying
the assumption that the equivalent static stress distribution
0;,,(P) produces the same amount of crack growth as the
periodic cyclic stress distribution over one cycle’s time interval
T results in

1/N
O g =) 0 (¥) ™
where the g-factor is defined as

;

T[ O'quc('f’,t) :le \
[ ZeaeiZ8 g

0 o-qucmax (qj)

T

&(¥)=1 > ®

The g-factor for static and dynamic fatigue are available in
closed form. Numerical integration is required for most load
conditions. A summary of g-factors for various loading func-
tions is given in table L.

The fatigue parameters N and B are calculated from rupture
test data obtained from uniaxially loaded specimens. For a

given applied constant static stress level j, [0' lege,, (7, )]

oy (’f’o) and the time to failure of the it? specimen is L For
static or cyclic fatigue, the g-factor will appear in the compu-
tation of the maximum equivalent static stress at location ‘.
The data (O'ﬁ( ¥ ) tﬁz) are ranked for each stress level J, where
jvaries from 1 to ¢, and i varies from 1 to p. For the it specimen
of rank r, using Benard's formula (ref. 9), Pﬁ, = (- 03y
(»+04).

For the specimen uniaxial Weibull model, the characteristic
strength O, is dependent on the specimen geometry. The
probability of failure P is expressed as

®
GGV

0 ji,o(qlo)rv

Pﬁi(t ;)=1-exp —[

where m, is the Weibull modulus, and 'I’O is the location of the
maximum principal stress at failure.

Hence,

(N, ~2)

0' ¥ t ...
o-lji,()(lPO): Y ( OB) ( 0) fii

uv

1/(N,~2)
b A
= (10)

Subscript 1 denotes the maximum principal tensile stress at
fracture. Equation (10) with g equal to 0y; represents the
transformation of the maximum principal static stress
O (g " (Fy) at t totheinertstress Oy o (Fp) at 1=0.

For the uniaxial Weibull model, the scale factor o,, is a
material property and the probability of failure is expressed as

1YV
Pp(t5)=1-expy— [E—} L oyre(F)V | (D)

ov

with the integration over the volume V and

N ()e(®) 1/(N,-2)
9y " )8 i
oyi0(¥) = B
N (N, ~2)
B O‘ﬁv(‘I’)g('I’)tﬁi a2
BWV

Equation (12) represents the transformation of the equivalent
static stress distribution at time t5;toan inert stress distribution
alﬂ’o(Y’) att=0.

For the compatability of failure probabilities, a basic require-
ment is that all models produce the same probability of failure
for a uniaxial stress state as that obtained for the specimen
uniaxial Weibull model. To satisfy this requirement, the value
of N, remains invariant whereas the fatigue parameter B will
depend on the probability-of-failure model. All failure model
dependent fatigue parameters (suchas B, , the specimen uniaxial
Weibull model) are directly proportional to B whichis given by
equation (5). For large values of N, all failure model dependent
fatigue parameters approach a common value.



TABLE L—g-FACTORS FOR VARIOUS LOADING FUNCTIONS?

[H(t) = 1for 1213 H(it) = 0 for t< 1,300y, 2 0]

rea-rt:3)

—2(01 —ou)t
+| ——————+20, -0,
T

[#(e5)-mem)
X1 Hl t,— |-HT)
2

W+ l)(al —o“)
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O},qr(f) N
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i
i
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]
t
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t
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i
t
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1
t
Cyclic sawtooth wave
2(0l -0y, )
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O, -0 i o
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i

Positive half-pulse of sine wave

B f2m H Al T
a,eqc(t)— o, sin -T— (1, 0)— t,-2—

)

el

e T
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t

ANemeth, N.N. etal.. CARES/LIFE Ceramic Analysis and Reliability Evaluation of Structures Life Prediction Program, NASA Lewis Research Center, unpublished

data, 1993,

"When o,, < 0, the value of the g-factor is generally obtained numerically by integrating over the time interval where o,

().2 0. The following simple example

leqe

illustrates how this case is treated. Given a sawtooth cyclic wave defined by (1, 0) over time interval T as (0, 0,,), (772, 6,), and (7, o,) with R= 7, /g,

= 1/3. The intetval where 0, (1) 2 0 is [1/ (t+|oy, /oy |)]T = 37/4. Hence, g = 2T

172

=2/T {[2(1 - R)t ]/T + R} dr. Thus, the resulting g-factor is g = 3/[4(N + D].
7/8

[ leler-oufreo o) s




Equating the risk of rupture of the specimen uniaxial Weibull
model to that of the uniaxial Weibull model results in

mv /(Nv '—2)
[ )
uy

B g_”_‘_’_ —va_ O'ﬁ('f‘)
Og, v aﬁ(‘I’o)

where V, is the effective volume for no subcritical crack
growth, and Vef is the effective volume when subcritical crack
growth occurs:

](mva)/(Nv -2)

and

dv

. _j d'ﬁ P) (m,,N,,)/(N,,~2)
I Il

Using the above equations to eliminate G, and B,,, from the
specimen uniaxial Weibull model yields

O';jv v (%, )e(Fo ) fi Velf/ ™

N,-2
BWVGOV

Pp,(t5)=1-expy— as

where m, =m, /(N, —2). Thus,

-

o ()= Co " (%)

14)

where Cﬂ varies with the probability of failure Pﬁi. Taking the
natural logarithm of equation (13) and manipulating it algebra-
ically yields

21,’11[&1(1 -P ,.)_1]

In L+

-1
Zn[fn 1-P,. ] 1
v wvo-ov
15)

This equation is the basis for a least-squares best-fit evaluation
of the fatigue parameters N, and B,,, using all the available
rupture data. If the same risk of rupture is maintained, from
equation (13), all fatigue rupture data (O'ﬁ( o) ’ﬁi) can be
transformed to an equivalent data set (0;('F), tTﬁ) for a given
value of N ;:

NV
b = 95(%) 1, (16)
Tji O'T(IPO) fi

&7 () = min]o £ (%)]

Subscript T denotes the transformed data. The probability of
failure for this case is

) Vi
P =1 ! i 17
i (t50) =1~ eXp| =7 N2 e |an
BWVO-OV
N i
Lo (Fo)el#o )V ™

Parameter estimation.—The following are techniques which
may be used to determine the parameters for static and cyclic
and then for dynamic fatigue using the power law formulation
just described.

Method I-Least-squares best fit using median values: The
inert material parametersm, and o, are known. For the median
values, and taking the natural logarithm, equation (14) yields

tnt ) 5 =N, a0 5 (%, )]0.5 +6n(C)o s

where subscript 0.5, denotes the median value. Since P, 0= 0.5,
intercept ((,‘ﬁ)o_5 is a constant. Substituting the set of median



values (O'A Yo tj]'i)O.S into the above equation permits solving
for slope N, and intercept (Cji)O.S' From the known value of N,
g('%¥y) and Vef can be computed. From the value of the inter-
cept, B, is obtained.

Method H-Maximum likelihood estimation using median
values: The inert material parameters are known. Based on the
least-squares best-fitresult for N, as astarting value (N, .. 4)
the median values (O'ﬁ( ¥, tﬁi)o.s are fransformed via equa-
tion (16) to the data set (o7 'F)), tTji)O.S‘ The maximum likeli-
hood estimation method is applied to equation (17) with Lr;; a8
the variate to obtain the value 7z, . From this value, Ny yeq
can be determined and compared with N, ... When both
values are within some specified tolerance, the solution is
obtained. If not, the two values are averaged and the process is
repeated. After convergence, the g-factor, Veﬁ andthen B, are
evaluated.

Method IlI-Least-squares best fit using all fatigue rupture
data: The inert material parameters are known. The data are
ranked for each value of (') in accordance with the magni-
tude of 7, to obtain the data set (0} (F5)» Lo fﬂ)
Substltutmg these values into equation (15) permits solving for
N, and the intercept. The value of N, is used to evaluate the
g-factor and V., and the intercept is used to solve for B,

Method IV-Maximum likelihood estimation using all fatigue
rupture data: The inert material parameters are known. A value
of N, is assumed based on the least-squares best-fit regression
analysis. All the data are transformed via equation (16). The
maximum likelihood estimation method is applied to equa-
tion (17) with £7;;; as the variate to solve for n, . The value of N,
is computed and compared with the assumed value. These two
values are averaged and the process is repeated until the
assumed value is within a specified tolerance of the computed
value. When this tolerance is achieved, g('¥;), Vef ,and B, are
evaluated.

Method V-Least-squares best fit to evaluate unsubscripted
B:Thevalue of Bin equation (6)is not model dependent and can
be obtained by using both inert and fatigue rupture data.
Equation (6) for static and cyclic fatigue reduces to

N, .
01,;, N, -2 ('I’o ) _9% (Y’OE(TO)tﬁt as)

where 6, i o('Fp) is theinert strength (maximum principal stress
at fracture) obtained from the rupture data associated with
( O'ﬁ( ¥ ¢ ) by equivalence of rank (. P ;- From equatlon (18)
after some algebralc manipulation,

tnig+2 0y ()= N, [tn 0 o (Fp) - tn 0 ()]

B
b4 19
* “[g(%)] )

For the set of data (O' (¥o): tﬁ P ;), the equivalence of failure
probability allows determmmg (c)'1 i0, ﬁl) These values are
substituted in the above equation to solve for N, and the
intercept. The g-faetor is evaluated using the value of N,, and
B is obtained from the intercept. A one-to-one correspondence
of the inert data to the fatigue data is assumed.

Method VI-Median deviation: The median deviation
(ref. 10) method is a measure of the spread of the data about the
median value. This approach is used when the inert parameters
are unknown and only time-dependent fatigue rupture data are
available. From the minimization of the median deviation, the
material parametersm , N, and B, & ;vv »~2 are evaluated. For
an assumed value of N, the data (O'ﬁ( ¥, tﬁi) are transformed
viaequation (16) into (o ('), tTﬁ). From the transformed data,
the median deviation for the total number of data points gp is

D=— ZZ‘Zn trji — n tTo.s

j=li=1

1 L& " En(l Pﬁ,)l

—1
”lqu j__] i=1 Zn(l - 0.5)

The process is iterative, covering an appropriate range of N,
values. The value of N, associated with the minimum value of

— Z Z ‘Zn try — 0ty

]111

is the solution. Once the value of N, has been determined, the
Weibull modulus can be obtained for known Pﬁi since
m, =m J(N, —2); hence

en(1-Py,) -
" en(1—0.5) T

7Nv_2 1 q P
m =———=

1)

After computing g(¥;) and V, of the value of (Bwvo- v ) is
then estimated from the median value [o7 ('), tTﬂ]o‘5 via
equation (17).

Dynamic fatigue.—For dynamic fatigue tests at aconstant
stress rate & o the time to failure of the ith specimen is tg; or,
equivalently, the maximum stress at failure associated with 7 ;
is O, Vi (‘Fy- Replacmg o, ('}’O) in equation (13) with Op; ; (Fo)s
Li with oy (‘Fp)/ o, (‘I’O) and g(¥y) with 1/(N,, + 1) ylelds



o e T” @)
6;(%)B,0y (1+N,)o >

Since & § is the independent variable, equation (22) becomes

m -lnaﬁi(‘l’o)
1
2[1{&[1 lp H
1 g .
=;v:j£naﬁi( )+ — m i —Znaj('f’o)>
(N, ~2)im,
1 Ver
~—£n 23
N (N, +1)B,,om @

At location ‘I‘O since afji =0, tﬁz, where tfji is the time to
failure of the it® specimen under stressrate G, ’T another form of
equation (22) is

4

+4nt,,
m, Bt
ol nfi- )|
=N, ~fmo.—/t §
mV
V(NV -2)im,
-—fn — (24a)
B, (1+N,)o)) Ny -2

Similar to equation (14), equation (22) can be expressed as

1/ N,+1 1/(N,+1

Maintaining the same risk of rupture for the specimen uniaxial
Weibull model, all O'ﬁ,( ¥y, g (!I’O) are transformed into

Orji ('PO) O'T('f’o) via

67 (Fy) = min[6, ()|

(24b)
5 () 1/(N,, +1)
[0
O.T"(lPo) = _.u_ o (qfo)
i 6, (%) fi
Thus
¢ 1y,
O'N +1
it .
Pﬁi=1—exp —<‘——;—11—N——2—f (25)
o
llm
(o) ||

This form is used in conjunction with the MLE method with

N, +1 .
Oy as the variate.

For the median deviation method, transforming the data via
equation (24b) results in the following:

ZZV“ O~ 0 Opg |

j=li=1

ol o)
= 1 (Nv_zjzxzn___ﬁi_ (26)

Parameter estimation methods I to VI are now applicable to the
dynamic fatigue case.

Paris Law

Cyclic effects on slow crack growth are dependent on the
duration and the number of cycles. Modeling for cyclic effects
is based on phenomenological critera (Paris law, Walker law)
traditionally used for metal fatigue. As shown in a previous
section, the Power law expresses the crack growth increment



perunittime. This section will describe the Parislaw formulation,
which expresses the crack growth increment per cycle.

Analysis.—The Paris law formulation describes the cyclic
loading by incorporating in the analysis the difference between
the maximum and minimum stress intensities. The rate equa-
tion is given as

dal¥n) g

- pCAD @7)

where A is a material fatigue parameter,

K, Y
a¥,n) = (——C} a,eqcn(s" n) (28)

and
AK oy F1) =0 g, (o) =O g (E]Y\aPor)

(#.n)1- R, n)]Y~fa(P.n) (29

= O-qucmmx

where R is the ratio of the minimum to maximum equivalent
stress in a loading cycle,

Gle‘lcmin

R(P,n) =

Tegepax

and n is the number of cycles. From equations (27) to (29), the
transformed stress becomes

n N, N.
[ n-regmMvory,  (#n)dn

o-quc,O (Fn f )= B
(N, -2)
N, -2
+ O-Ie;cmax (.P’ n f ) (30)
where
2
B= €30
N,—2 2
A K (N, -2)r

For a periodic cyclic stress, R('¥,n) and oy, e (¥,n) are
independent of n; hence,
N v N,
Gle;c i (T)[l - R(.P)] vn f
o-quc,p = B
1/(N,~2)
N -2
+ O ('I’, n f) (32)

For {0'%2 e CANES R(lIl)]N vn f / B} >> 1, equation (32) is
approximated as

1/(N, -2)
N, N, v
csquc max (.P)[l - R('P)] vn f

B

Gquc,O F)= (33)

Equation (33) represents the transformation of the stress distri-
bution at n = n.to its inert stress distribution at n = 0.

The fatigue parameters N, and B are obtained from cyclic
rupture data tests on uniaxially loaded speciments. For a given
value of j, associated with stress level o, ('I’o) (o, o (¥l
where ‘I’O is the location of the maximum cyeclic stress, the
number of cycles to failure for the it specimen is gy The data
{O'ﬁ( Yo l1-R (‘1’0)] nﬁl} are ranked for each value of j, where
Jj varies from 1 to g and i varies from 1 to p. For the it specimen
of rank r subjected to stress level j, the failure probability is

r-0.3

B p+04

Maintaining the same risk of rupture for the specimen uniaxial
‘Weibull model and the uniaxial Weibull model results in

N,

 gi {[1 - R,(%o)|o 5(% )}

N,
B, oN"?

1/m
Ve ¥

Pﬁi =1 —exp|— (34)




and

-N,
ng = Cﬁ{a #(%o)[1- RJ.('I’O)]} ' (35)
where
.
N,-2
Ci =1 P Cod 1, ( (36)
v,
en{1- Py, )“1

and

N vty ) (N, =2)
IR i i) v o

o 51— R (¥y)]

From equation (35)

tn(ng)=tn C; - N, enfo )1 - R 6

and
2 Zn[ln(l - Pﬁi)—l]
Zn(nﬁi)+ S—
¢ [én(l Py) }
=N, - ul ~ tnfo 5 (% )1- &, ()]}
.1/'
~fn ;-Vif% (39)

with o(¥p) [1 - R(‘I’O)] the independent variable and » ; the
depen ent variable. Mamtammg the same risk of rupture or all

{O'ﬁ( ¥p[1-R ( ¥l jjz} are transformed into {o('F)
[1 - R (FYI, npy}s

where

10

o7 (i Ry ()] = min{a 1= R (7, )]}

Ny = o (‘I’O ) [1 ey (‘I’O ] ng (40)
and substituting into equation (34),
0
Py =1-expi- i ¢ (41)
B%’VO.OV 2 o —
| {or()1-Ro()]} " vy ™ ]

Parameter estimation.—The following are techniques which
may be used to determine the parameters for cyclic fatigue using
the Paris law formulation just described.

Method I-Least-squares best fit using medianvalues: The inert
parameters m,, and o,, are known. For the median values,
equation (38) becomes

ln(nﬁ" )0.5 =

where the subscript 0.5 denotes the median value. Since
Pg; = 0.5, the intercept €n(Cj;)o 5 is a constant. Substituting the
set of median values into the above equation determines N, and
(Cido.ss Veris computed and B, is found from the value of the
intercept.

Method II-Maximum likelihood estimation using median
values: The inert parameters are known. An initial value of N, is
assumed based on a least-squares best-fit regression analysis;
{ o ¥ l1- -R(¥pl n }0 5 are transformed via equation (40)
to the data set {0'7(‘1’0) 1~ R1( ¥l nTz}OS The maximum
likelihood estimation method is applied to equation (41) with
(n75)0.5 as the variate; then the value of 7, is obtained. From
this value, N,oo . .q is compared with N puted: The process is
iterative. When both values are within some spec:ﬁed tolerance,
the solution for N, has been found. After convergence, efand
B, are evaluated.

Method Ill-Least-squares best fit using all fatigue rupture
data: The inert parameters are known. The data for each value
of aﬁ(&”o) [1 -R, ('I’O)] are ranked in accordance with the
magnitude of gy to obtain the data set {(, (‘I’O) [1-R; (‘PO)]
nﬁl,P -}. These values are substituted in equauon (39) to evalu-
ate N, and the intercept; Vef is determined and from the value of
the mtercept B,,, is obtained.

/n (cﬁ )0.5 -N, /Zn{cr (¥ )[1 -R;(¥ )]}0.5



Method IV-Maximum likelihood estimation using all
fatigue rupture data: The inert parameters are known. A value
N, = N, meq 15 assumed based on the least-squares best-fit
results The data are transformed through equation (40) to data
set {o(¥p [1 - RT( ol nT,} The maximum likelihood
estimation method is applied to equation (41) with npj; @8 the
variate to solve for m,. The value of N, is computed and then
compared with the assumed value. These two values are aver-
aged and the process is repeated until the assumed value is
within some specified tolerance of the computed value; Vef and
B, are evaluated.

Method V-Least-squares best fit to evaluate unsubscripted B:
The value of B, equation (31), that is not model dependent can
be obtained using all the rupture data (inert plus fatigue). Intro-
ducing the subscripts i and j into equation (33) with reference to
specimen number and stress level, respectively, yields

o5 ()1~ B (o) s

oy (0= 5 )

and
tnng+26n 0,50 (%) =N, (Zn 01,0(F) - Zn{O' (%)
[1- %, )]}) +B  (43)

where O15i0 (') is the inert maximum principal stress associ-
ated w1th ng; by the equivalence of rank. Thus, the inert stress
Gjji0 is matched with { O'ﬁ(‘l’o) [1~R, (Y’O)] nﬁl} The above
equation is used to solve for N, and from the intercept, evaluate B.
Method VI-Median devzatzon The median deviation meas-
ures the spread of the data about the median value. The median
deviation method is used when the inert parameters are unknown
and only subcritical crack growth rupture data are
available. From the minimization of the median deviation,
the material parameters m,, N,, and the product B, o-N , 2
are evaluated. For an assumed value of N, the data {0' (‘I’O)
[1 -R, ('I’O)] ng} are transformed via equatxon (40) into
{0'7(‘1’0) [1- RT(‘I’O)] nTl} From the transformed data, the
median deviation for the total number of data points gp is

MD= zz}en ngi =

—fn l
T
Pq j=li=1 05

(44)

_ ! ifgfi(_j_)_l_

i, pa SA | m-05)”

The process is iterative, covering an appropnaxe range of N,
values. The value of N, associated with the minimum value of

the median deviation MD is the solution. With N, and Pﬁl
known, '
-1
N -2 1%L Zn(l - Pﬁi) (45)
v MDmln Pq ]=1 i=1 fn(l - 0.5)

The value of B, O'g, v72 is then estimated from the median
value {07 (') [1 - R (¥l ”Tji}o.s via equation (41).

Walker Law

Analysis —As illustrated in the previous section, the Paris
law formulation describes the cyclic loading by incorporating in

the analysis the difference between the maximum and minimum

stress intensities. However, this approach does not take into
account the effect of the stress ratio R (i.e., the ratio of the
minimum to maximum cyclic stress). For metals, it was ob-
served that the higher the positive value of R, the greater the
amount of crack growth. To incorporate the effect of stress ratio
on crack growth, the Walker formulation is used. The Walker
law rate equation is given as

0
da AAKSY (¥, n)
('I’,n) — A K?v Y (¥, n)AK [ Ieg -
dn eq g = [1- RCP, )%~

(46)

where Kqu =K, oomax and Q, is the Walker material fatigue
parameter. When Q equals N,, the Walker law reduces to the
Paris law:

AK leg = Yo, eqc (¥, n)[1- R¥.m)lya¥,n) (47

where
(e] (¥,n)
R, 1) = —Zain
c lege,,. W,n)
and
K 2
a(tP,n)=(-—;£) O n(Fom) (48)

where n is the number of cycles. From equations (46) to (48), we
obtain the transformed equivalent stress distribution at n = ne
to its equivalent inert stress distribution at n.= 0:
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o-qu(:,O('II) = o-quc,n(lp’ n= 0)

j S opne (F.n)1- R, m)]" dn

B
1(Q,~2)
-2
+ ag;cm (‘I’ n f) (49)
where
2
B=
2 0,-2
AOY (Qv . Z)ch
For gy, " cm( ¥,n) and R(¥,n), independent of n,
9, N,
I P G L 0
o-quc,O( ) )= B
1(Q,-2)
1 % q c ('P)} (50)
For{o%e ger. @01- RN n, /B} >>1,
11@Q,-2)
o?;qcm (#)1- R n,
6quc,O = B GV
The fatigue parameters N,, @, and B are obtained from cyclic

rupture data on uniaxially loaded specimens. For a given value
of j, associated with O'f]-('I’O) = [O'quc (‘I’O)]j, the maximum
pnnc1pa1 stress in the specimen, the number of cycles to failure
of the it specimen is n... The data {0' (‘I’O) [1-R. (‘I’O)] ng 5
are ranked for each vaflile of j, where J varies from 1 to q and i
varies from 1 to p. For the i specimen of rank r, P, - 03y
(p + 0.4). With this subscript notation, equation (Sﬁ 1) becomes

1/(Q,,—2)

(52)

12

Equation (52) represents the transformation of the maximum
principal stress Oy at ng; to the inert stress Gy;, at n = 0.
Maintaining the same risk of rupture for the specimen uniaxial
Weibull model and the uniaxial Weibull model results in

m, (Q,~2)]
n,.
fii
P ;= 1—exp| — -
Qv Q Z2)im,
L (‘Il())[l R( )] ]
(53a)
and
—c.o 2w \i-r(¥ )" 53b
ng=Cuop o)[ - Ry( o)] (53b)
where
0,-2
C = GOV BWV
ji (Q,~2yim,
Ver
a1
{1~ py;)
and
N, 1M /(@y-2)
o2 ('I’)[I—Rj('ll)] v
v, ;= Iv G N, av
g ()1 - R; (%)
From equations (53),

tang=tnC, -0, tno(F)-N, all-R;F)| 54

and
-1 -1
2 fn ln(l - Pﬁi) i ln(l - Pﬁi)
fnng + - =0 —o ¥
i m, v m, nog(t)
,-2
UOV BWV
- Nvln[l - R (#, )]+ f 0, Bimy (35)

Vef



Maintaining the same risk of rupture for the specimen uniaxial
Weibull model, all fatigue rupture data {O'ﬁ (Fp 1~ Rj (¥l
ng} are transformed to an equivalent data set {0, (‘)
[1-Rp (¥l nTﬁ} for given values of O and N,;

of ()] ]
or’ (% )[1 - R (%, )]N v [ B (56)

nTji =

where o (‘) and Ry () are the lowest values of the set of
data {O'ﬁ(‘I’O) 1- Rj(‘I’O)]}. Substituting equation (56) into
equation (53) yields

m/(Q,~2)

ani

P.. =1-exp| -] —
ﬁ’ { vav ZBW }
g N, (Q,~2)
op ¥ ()= & (7)) v,
(57

Parameter estimation.—The following are techniques which
may be used to determine the parameters for cyclic fatigue using
the Walker law formulation just described.

Method I-Least-squares best-fit regression plane using
median values: The inert parameters o, and m,, are known.
The data median values (O'ﬁ (¥ —Rj (Fpl. nf]-i)o.5 are substi-
tuted into equation (54); Pﬁi =0.5 and C;; is now constant; Cﬂ
Q,, N, are computed via the least-squares best-fit regression
plane analysis; vV, and B, are then evaluated.

Method II-Least-squares best-fit regression plane using all
data: The inert parameters ¢, and m,, are known. For each
value of j from the data, ranked in accordance with the value of
Mg the values of iji associated with {O'ﬁ Py 1- Rj ('l E;
are obtained. From a least-squares best-fit analysis of the

- applied to equation (55), @, and N,, are computed; Vef and B,
are then evaluated.

Method IlI-Least-squares best-fit regression plane to evalu-
ate unsubscripted B: The value of B in equation (49) is not
model dependent and can be obtained using all the rupture data
(inert and subcritical crack growth). The transformed maxi-
mum principal uniaxial stress G150 (¥, in equation (52) is
taken as the inert strength distribution. The inert strength is
associated with {O'ﬁ (Fy [1- Rj (Pl nﬁi} by equivalence of
rank. For each j varying from 1 to g, the subscript i varies from
1 to p. There are p-specimens tested for each value of j. From
equation (52),

nn i T 2{n o, ji,o('Po) =0, [Zn 0yji0(Fp) —{no 5 (% )]

_N, en[l - Rj(‘I’O)] +mB (58

The data are substituted into equation (58) to solve for Q , N,,
and B.

Method IV-Maximum likelihood estimation using all data:
This iterative process involves determining values Q,, N,, and
B, assumed unique to the data. The inert parameters are known.
Based on LSBF results, the values N, = N, .. and
0, = O ccumeq &€ assumed. The data are transformed via
equation (56). The MLE method is applied to equation (57),
with Ny 88 the variate to solve for m /(Q ~2) and then to
compute Q. This value is then compared with the assumed
value. If Q. .q is within a specified tolerance of Q, . 4
the solution is obtained. If not, the next value of Q, is assumed to
be the average of these two values. If no solution exists, the

process is restarted with a new value for N, ..

Experimental Applications

The examples in this section employ some of the equations
presented in the preceding theoretical sections. It is under-
stood in this section that failure occurs at location ‘I’O, and
therefore said notation will be omitted in the subsequently
developed equations. Inert room-temperature and dynamic
fatigue fracture data are analyzed for (a) soda lime glass,
ring-on-ring square plate test specimens and (b) sintered
alpha silicon carbide (SASC) material obtained from O-ring
and C-ring specimens at 1200 and 1300 °C.

For the soda lime glass material, inert parameters are
obtained using the least-squares best-fit (LSBF) and maxi-
mum likelihood estimation (MLE) methods. Dynamic fatigue
data are then utilized in conjunction with these known inert
parameters (obtained via the LSBF and MLE methods) to
generate fatigue parameters for the soda lime glass. This
approach was used to determine fatigue parameters for the
LSBF method. The MLE method did not converge to a solu-
tion. The results of these methods are presented. Finally, the
soda lime glass dynamic fatigue data are used in conjunction
with the median deviation (MD) method to obtain the cumu-
lative distribution curve defined by the Weibull parameter
m, the fatigue parameters N, and the product B, o-;i 52

For the sintered alpha silicon carbide material, inert pa-
rameters are obtained using the least-squares best-fit (LSBF)
and maximum likelihood estimation (MLE) methods. Dy-
namic fatigue data are then utilized in conjunction with these
known inert parameters (obtained via the LSBF and MLE
methods) to generate fatigue parameters for the SASC
material.

Simulations have shown (ref. 11) that the standard devia-
tion for the MLE method is smaller than that for the LSBF
method. However, all experimental data reflect some degree
of error (ref. 12) and flaw variability. Both methods (MLE
and LSBF) are used in the determination of the relevant
parameters.
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Soda Lime Glass TABLE IL—INERT DATA FROM SODA LIME GLASS

RING-ON-RING SPECIMENS
Inert data (table IT) and dynamic fatigue data (table IIT) were Thic;:mss, F?act“;e load, T“i°:“°55~ Ffactﬂ;e Toad,
obtained from soda lime glass ring-on-ring specimens (fig. 1). mm kN mm KN
. MO .
Fc?r this material, inherent ‘surface flaws ‘were the_ source c.>f 1099 5120 04285 2150
failure (Nel‘rfeth, N.N. et al.: CARES/LIFE. Ceraml'c .Analys1s 1.4830 1.4520 6478 15510
and Reliability Evaluation of Structures Life Prediction Pro- 1.5540 1.5420 27980 1.4920
gram. NASA Lewis Research Center, unpublished data, 1993). 1.3650 1.5220 S124 1.4340
The radial stress o, and tangential stress G, on the tensile 12910 15050 7424 1.5250
1 tual for radius r <R. th tan £ the 1 8305 1.5340 1.5070 1.5180
?aded surface are equal for radius r < R;, the radius of the load 9756 1.4920 8223 1.4430
g 17910 15190 1.4640 1.5260
5491 1.4480 1.0920 1.4780
5 o 1.9000 1.5320 1.2260 1.5170
3P a +v)(R0 — R ) 6928 1.5310 1.3110 1.4750
O =0, =—75 2(14+v) fn| -2 |+ —" 59 6418 1.5660 1.8130 1.5590
R, R
4mh i a 4529 1.4950 1.4800 1.5260
6357 1.4940 1.5880 1.5450
, 6153 1.4370 1.5230 1.4950
where P is the applied load, % is the specimen thickness, v is
Poisson’s ratio, and R, is the diagonal half-length of the square TABLE [IL.—DYNAMIC FATIGUE DATA FROM
plate specimen (fig. 1). The maximum principal stress for SODA LIME SLASS RII\éG-ON-RlNG
r 2R, is the tangential stress PECIMEN
Fracture stress, 6, MPa (at various stress rates,
G, MPa/sec)
2 5 2 O'ﬂiat Op; at Op; at Oy, at
R% +r ) . A N T4
O =i P2 21+ v) Zn(&)_(l—v)—“——( ° : L . 0,=002} 6,=020 | 6,=200| &,=2000
tan
Amh r r R, 188.677 | 138963 | 239176 | 267.279
43414 | 186.046 324237 | 250.898
5 238.163 53900 | 112.060 | 302.116
R 163981 | 226200 69.959 | 200.791
INE : : )
+2-v) & (60) 214390 | 228609 | 224201 | 85021

s 180.811 110.241 360.756 533.321
206.690 355.705 174.677 307.547
135.819 59.525 312.900 282.393

Inert data analysis.—For the soda lime glass material, inert 198480 | 231543 | 182485 | 377911

parameters are obtained using the least-squares best-fit and maxi- 273.027 63768 | 271662 | 311192
mum likelihood estimation methods. 143526 | 312.097 | 311.681 | 172.435
For the least-squares best-fit method applied to the inert data, 113158 | 184.861 | 226959 | 202.541

212336 | 255.119 | 99.672 | 253.662
137.006 | 245585 | 164.974 | 339.116
—m tno,-m, Inog, (61) 67769 | 112365 | 104515 | 211.909
P, 246.808 | 164962 | 286925 | 259.588
247317 | 162755 | 264994 | 237.630

where Pﬁ is the probability of failure of the & specimen, :ZZ‘:@ 150471 109'722 302.684
obtained from the ranking of Gy; m, is the Weibull modulus; o}, : 77447 1 133.134 ) 360.206
. . . . +h . / 114253 | 151.813 | 321.845 | 310427
is the maximum tangential stress at failure of the j specimen; 216749 | 215165 | 136249 | 293215
and Oy is the characteristics strength. Figure 2 shows a plot of ) ) ’ ’

. Lo A . : 216407 | 129921 | 140.760 | 138.294
the ring-on-ring inert data and the solution obtained using the 97967 | 135024 | 213386 | 320906

fn] /n

LSBF method. ) o o ) 98705 | 128.776 | 234.744 | 269.308
For the maximum likelihood estimation method applied to 132,668 136033 | 373915 | 470079
the inert data, 108464 | 268.623 | 313.608 | 252.308
120176 | 241.587 | 269.948 | 257.600

- mg 169.924 | 236632 | 288.936 | 335.608

Pﬁ —1—exp|— il (62) 172539 | 177639 | 227179 | 223.475

Gy, 246477 | 188238 | 326.009 | 428.672

--------- 191009 | e | e
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Figure 1.—Ring-on-ring ioaded square plate
specimen. Poisson's ratio, v, 0.22; outer ring radius,
Ry, 16.090 mm; inner ring radius, R;, 5.015 mm;
diagonal half-length, Rg, 35.921 mm.

L
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9 l | |
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Figure 2.—Ring-on-ring inert data and least-squares
best-fit line. Weibull modulus, mg, 2.675; scale
factor, o, 15.76 MPa-m2/Ms; effective area, Ag
191.0 mm2.

For j varying from 1 to g (g = total number of test specimens),

q
ay,0%
o
my=— — (63)
n m
anﬁsén o5= Y. aﬁZoﬁs
= PR
and
q 1/m L
o'
2%
| =t
Oy, = P (64)
1i/m

‘The scale factor is 0,=0gs4; °» where the effective area is

e
2|
A

and O'ﬁ(r) = O,,(r) is the maximum principal tangential stress
distribution. Figure 3 shows a plot of the ring-on-ring inert data
and the solution obtained using the MLE method.

Dynamic fatigue data analysis—In this section, fatigue
parameters are determined using dynamic fatigue data in con-
junction with known inert parameters m and o, (obtained via
the LSBF and MLE methods). The effective area A o is assumed
constant for all specimens.

For the least-squares best-fit method applied to the dynamic
fatigue data, equation (22) is utilized for surface flaws by replac-
ing subscript v with s. After some algebraic manipulation, where

G is the independent variable, the linear regression function is
given by

O'ﬁ(r) i

0 ,;(r=0) (65)

fn| n| —L
_P
—/no,;
mg fit
24n| /n lP
=Llmeo, + LiVAyNP
N i " J
$ by
; A‘E’iv o (66)
+—{n
N.-2
N, (Ns +1)Bws0'oss
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where the effective area is

4=
A

Figure 4 is a plot of the ring-on-ring dynamic fatigue data; also
shown is the solution obtained using the LSBF method applied
to the median data values given in table IV. Figure 5 is a plot of
the ring-on-ring dynamic fatigue data and shows the solution,
obtained using the LSBF method, to all the dynamic fatigue data
given in table I11.

2 r ) .

1=

(m,N,)I(N,~2)

57 dA (67)

O'ﬁi(r=0)

en[en (1-Pp )™
]

-2

-3

- 9 | | |
4.5 5.0 5.5 6.0 6.5

én O'fj

Figure 3.—Ring-on-ring inert data and maximum
likelihood estimation line. Weibull modulus,
my, 2.869; scale factor,o g, 19.20 MPa-m2/Ms;
effective area, Ay, 182.6 mm2.

O Alidata
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enogi+{2enien(1-P;) ™ 1/m }-en g,

Figure 4.—Ring-on-ring dynamic fatigue data and least-
squares best fit to median data values. Weibull modulus,
m, 2.675; scale factor,o ., 15.76 MPa-m?/Ms;
exponential fatigue parameter, N, 12.68; Weibull
fatigue parameter, B, 1.21 MPaZ?-hr; effective area,

Agp171.4 mm2,
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Figure 5.—Ring-on-ring least-squares best fit to all
dynamic fatigue data. Weibuli modulus,mg, 2.675;
scale factor, o, 15.76 MPa-m2/™Ms; exponential fatigue
parameter, N, 13.84; Weibull fatigue parameter, B,
0.468 MPa-hr; effective area; A, 173.0 mm2.

TABLE 1V.—DYNAMIC FATIGUE MEDIAN
VALUES FROM SODA LIME GLASS
RING-ON-RING SPECIMEN?

Stress rate, Tangential fracture stress,
[+3 ] N (o) fj >
MPa/sec " MPa
0.02 171.23
20 177.64
2.00 230.96
20.00 275.85

aShown in fig. 1.

If the effective area A o is not constant (ie., A, 2> equa-
tion (66) can be written in another form:

fnl /n

P,
21 n 04 +6n0, =-;Jl——[£n(Ns +1)

-

1
+fn Bws]+1—v—<éno-ﬁi+
s 5

N,-2

mg

+ (68)

fn A +2 0,



The process for computing N is iterative. The value of A efi is
assumed to be constant for all specimens (A ; is constant). This
constant value is used to calculate a starting value for N, (eq. (66)).
Then, this starting value of N, A and the specimen A ofi values are
used to begin the iterative process. Iteration continues until the
assumed value of N, is equal to (or within some specified
tolerance of) the computed value of N.

Since Op; = o it wherf.e t;; is the time to failure of the ith
specimen under stress rate > another form of equation (66) for
surface flaws is

+4nt,,
m i
In| fn !
1- Pﬁi )
=N_3 - —Zntﬁi—fn6j>
Py
(N.=2)im
A s 5
—tn—L | (69)
(Ns + 1)Bwso-oss

For the maximum likelihood estimation method applied to
the dynamic fatigue data, with m_ and o, known, analogous to
equations (62) and (22) is

8. \"s
Pg; =1-exp —(%) (70)

where the variate Sﬁi is

N +1\M(Vs—2)
o .5
Sg=|—L—
: 3
g;

and parameter Z is

AN _~2)
N -2 5
(Ns + I)BWSO'D;
(N_-2)Im,
Ay

The value of iji is obtained from the ranking of the failure
stress. v

The solution is obtained by assuming an appropriate range of
values for N based on the least-squares best-fit result. With the
value of N, A fixed, a starting value for m A is assumed equal to the
inert value. Based on this value, a computed Weibull modulus
m, is obtained. A new value of m, is assumed equal to (m  +
m)/2, and the process is repeated until convergence. Conver-
gence is assumed to occur when the absolute value of the
difference (m, — m, ) is < 0.01. The process is repeated, chang-
ing the assumed value of N until the computed value of m_, is
equal to the known inert value. For the soda lime glass dynamic
fatigue data examined here, this convergence did not occur, as
shown in figure 6. The inert value of the Weibull modulus
obtained via the maximum likelihood method is 2.869. At the

. start, for a fixed value of N, =4 and an assumed m = 2.675,

convergence occurred after six iterations to m , = 0.856. In most
cases, convergence occurred after two iterations. For N varying
from 4 to 44, the largest value of m _ obtained was 2.570. The
computed modulus did not converge to the inert value of the
Weibull modulus, 2.869.

The value of B, for the ring-on-ring square plate test
specimen is obtained via the specimen uniaxial Weibull model
and least-squares best-fit method. The stress transformation
equation is

/(N .~2)
Oreq0(Po) = —-————-—agﬁl(%) S (71)
IegO\" 0/ ™|
6 ,B,(N, +1)
Thus, the probability of failure is expressed as
41—
(7]
E
")
=
5
Q
0
E
22
o
3
k]
[
5
o
£
3
0 1 1 | | |
0 10 20 30 40 50

Assumed exponential fatigue parameter, Ny

Figure 6.—Fatigue parameter determination for soda lime
glass data via maximum likelihood estimation method.
No convergence. Weibull modulus, m, 2.869; scale
factor, 0,5, 19.20 MPa-m2/mg,
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$
becomes the basis for a least-squares best-fit evaluation. Equat-

ing the risk of rupture of the specimen uniaxial Weibull model to
that of the uniaxial Weibull model yields the relationship

. ( A ](er)/ms

us ws A

ef

Forlarge values of N oA of tendstoward A ,and B, tends toward
B

Wls-Tor the median deviation method applied to the soda lime
glass dynamic fatigue data, it is assumed that no inert data are
available. From equation (26) (for surface flaws replace sub-
script v with s), the value of N,= 13.1 produces the minimum
value MD_ . . Figure 7 shows the variation of the MD value as
afunction of the assumed value of N .. For assumed values of N,
that are less than 10.0 and greater than 13.1, the MD value
continuously increases. A plot of the distribution solution
versus the experimental fatigue data is given in figure 8.

Sintered Alpha Silicon Carbide (SASC)
Inert data (table V) and dynamic fatigue data (table VI) were

obtained from sintered alpha silicon carbide O-ring and C-ring
specimenstested at temperatures of 1200 and 1300 °C. Schematic
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Figure 7.—Median deviation sum (MD) as function of

assumed exponential fatigue parameter N. Solution is
Weibull modulus, my, 2.33; fatigue parameter, N, 13.1.
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Figure 8.~~Median deviation distribution for fatigue
parameter, Ng, 13.1; Weibull modulus, mg, 2.33;
Z, 1083.8 (MPaNs-sec)!/(Ns-2). The terms Py;; and
Z are defined in equation (70).

diagrams of the specimens, including nominal dimensions, are
infigure 9. The SASC dynamic fatigue data are the mean values
based on at least seven specimens. They are assumed herein to
be the median values. For this material, inherent volume flaws
were the source of failure (refs. 4 and 5).

Inert data analysis —For the sintered alpha silicon carbide
material, inert parameters are obtained using the least-squares
best-fit and maximum likelihood estimation methods. Fig-
ures 10 to 13 show plots of the SASC O-ring and C-ring inert
data and the solutions obtained using the least-squares best-fit
method. Figures 14 to 17 show plots of the SASC O-ring and
C-ring inert data and the solutions obtained using the maxi-
mum likelihood estimation method.



TABLE V.—INERT DATA FROM SINTERED
ALPHA SILICON CARBIDE O-RING

AND C-RING TEST SPECIMENS
Specimen O-ring C-ring
number, N
j Temperature, °C
1200 | 1300 { 1200 | 1300
Fracture stress, %5 MPa

1 3503 | 281.0 | 256.9 | 249.5
2 286.4 | 309.4 | 237.0 | 207.5
3 268.1 12654 |2159 | 2359
4 2424 | 301.1 | 254.2 | 2475
5 3382 | 3379|2139 | 180.6
6 294.7 1253.51231.9 | 2490
7 2843 27332157 | 198.2
8 300.5 | 233.9 | 246.6 | 209.0
9 248.6 | 291.0}296.9 | 202.1
10 287.2 130232192 | 2773
11 268.6 |272.1|2484 | 266.4
12 283.2 | 284.1]262.0 | 305.6
13 265.7 {3139 2913 | 259.6
14 307.1 | 231.3 2644 | 2530
15 2743 |282.0 | 2514 { 3000
16 276.3 |299.9 | 243.0 | 180.8
17 291.7 | 268.6 | 200.2 | 316.3
18 303.5 {2206 2664 | 2789
19 203.1 | 227.7 2008 | 285.7
20 2724 | ~~— | 2899 | ——-

TABLE VIL—DYNAMIC FATIGUE
MEDIAN VALUES FROM SINTERED

ALPHA SILICON.CARBIDE
O-RING AND C-RING
TEST SPECIMENS
Stress rate, Temperature, °C
G,
MP a;sec 1200 1300
Fracture stress, O, MPa
O-ring
350.0 275.7 313.5
350 2512 271.7
35 234.2 249.8
C-ring
100.0 253.9 256.0
10.0 2293 2254
1.0 218.2 2054

Dynamic fatigue data analysis.—Table VI.contains median
values of SASC O-ring and C-ring dynamic fatigue test data at
1200 and 1300 °C and at three stress rates. The least-squares
best-fit method is applied to the dynamic fatigue data by using
the inert parameters obtained via the MLE method. Figures 18
and 19 show plots of the O-ring and C-ring dynamic fatigue
data and the solutions obtained using the least-squares best-fit

1

O-ring in diametral compression

?

C-ring in compression

Figure 9.—0-ring and C-ring test specimen configuration
and nominal dimensions. Outer radius, Ry, 22.2 mm;
inner radius, R;, 17.6 mm; width, 4.6 mm.
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Figure 10.—Least-squares best fit to 1200 °C SASC
O-ring inert data. Weibull modulus, m,,, 12.51; scale
factor, o, 65.98 MPa-m®My; effective volume,
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Figure 11.—Least-squares best fit to 1300 °C SASC
O-ring inert data. Weibull modulus, m,, 9.66; scale
factor, o,,, 41.59 MPa-m®my; effective volume,
V, 7.07 mm?3,
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Figure 12.—Least-squares best fit to 1200 °C SASC C-ring
inert data. Weibull modulus, m,, 9.63; scale factor, o,,,
43.89 MPa-m3/My; effective volume, V,, 39.20 mm?.
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Figure 13.—Least-squares best fit to 1300 °C SASC C-ring
inert data. Weibull modulus, m,, 6.56; scale factor, o,,,
20.91 MPa-m%/mMy; effective volume, V,, 58.00 mm?,
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Figure 14.—Maximum likelihood estimation fit to 1200 °C
SASC O-ring inert data. Weibull modulus, m,, 10.68;
scale factor, o, 51.02 MPa-m3/”’v; effective volume,
V,, 6.32 mm3.
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Figure 15.—Maximum likelihood estimation fit to 1300 °C
SASC O-ring inert data. Weibull modulus, m,,, 10.01;
scale factor, o, 44.49 MPa—m3/’"v; effective volume,
Vg, 7.07 mm3
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Figure 16.—Maximum likelihood estimation fit to 1200 °C
SASC C-ring inert data. Weibull modulus, m,, 9.46;
scale factor, g, 42.52 MPa—m3/”'v; effective volume,
V,,, 39.20 mmq.
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Figure 17.—Maximum likelihood estimation fit to 1300 °C

SASC C-ring inert data. Weibull modulus, m,,, 7.04;
scale factor, o, 24.82 MPa-m3/’"v; effective volume,
V,, 58.00 mm3,

Temperature, Weibull Scale Fatigue parameters
°C modulus, factor, N, B,
m, Coys MPa?-hr
MPa-m3/m,
O 1200 10.68 51.02 27.23 0.112
O 1300 10.01 44.49 19.30 4.992
5.4 —
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Figure 18.—Least-squares best fit to SASC O-ring
dynamic fatigue median data.
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method based on equation (66). The slope of the line is given by

Weibull Scale Fatigue parameters
modulus, factor, N, By 1/N,. For median values, the formulation generally used is
m, Cous MPa2-hr
MPa-m3/m, o,
9.46 42,52 29.43 0.461 oy = ~ +’1 +C;; (74)
7.04 24.82 19.93 0.551 v
where
%5 =%f
and ’
N,-2)/
V:f y—2)m,
fn| fn} ——— £n N 2
o M2 1-Pg, (N, +1)B,, 0,
!N, +1 m, N, +1

2

3 4

5

Figure 19.—Least-squares best fit to SASC CQring
dynamic fatigue median data.

6
Cﬁ is a constant since P, = 0.5 for the median values.
The general equation (66) was used to compute the fatigue
parameters.

TABLE VIL—SUMMARY OF RESULTS FOR SODA LIME GLASS RING-ON-RING SPECIMENS

Method Data results
Inert Dynamic fatigue
All data Median values Effective
Weibull | Characteris- |~ Scale | Effective | Surface | Weibull | Surface | Weibull | %%
modulus, | tic strength, factor, area, fatigue fatigue fatigue fatigue nnenﬁz
my g s G Ae exponent, | parameter, | exponent, | parameter,
o5’
MPa MPam?ms | mm? N, Bs N, By
MPa2-hr MPa’-hr
Results from present analysis
Least-squares 2.675 387.0 15.76 191.0 —— - 12.68 1.21 171.4
best fit
2.675 387.0 15.76 191.0 13.84 0.468 _—— —— 173.0
Maximum 2.869 385.9 19.20 182.6 No convergence @ |-———~—m———mm i ———
likelihood
Median 2.33 - (a) JR— 13.1 (a) - == -——
deviation ——
Results from Nemeth et al.P
Least-squares 2.675 3953 22.37 (b) —— —-—— 12.60 ®) (®)
best-fit
median values
Maximum 2.871 394.2 —_——— —-——— - - - —— -——
likelihood
Median 2.344 —— 15.00 ) 11.88 229 ——— - )
deviation

2The product (B, GZS _2) is known from eq. (70).
®Values based on Batdorf model in Nemeth et al.: CARES/LIFE Ceramic Analysis and Reliability Evaluation of Structures Life
Prediction Program. NASA Lewis Research Center, unpublished data, 1993.
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TABLE VIIL—SUMMARY OF RESULTS FOR SINTERED ALPHA SILICON CARBIDE SPECIMENS

Specimen | Temperature, Least-squares best-fit inert data Least-squares best-fit dynamic
°C , - fatigue data median values
Weibull | Characteristic | Weibull Effective — -

modulus, strength, scale volume | Fatigue parameters | Effective

m, ;[ (;,, factor, ‘:;3 w, B vo‘l,ume
: Sy MPa® el %3

MPa-m3/my

O-ring 1200 12.51 298.5 6598 6.32 2724 | 0.11 538
1300 9.66 290.3 41.59 7.07 19.30 | 4.98 5.77
C-ring 1200 92.63 2579 43.89 39.20 29.43 | 1.61 35.60
1300 6.56 265.2 2091 58.00 1992 | 196 50.50

Maximum likelihood inert data Least-squares best-fit dynamic
fatigue data median values
O-ring ) 1200 10.68 298.9 51.02 6.32 2723 | O.11 538
1300 10.01 290.1 4449 7.07 19.30 | 499 5.77
C-ring 1200 9.46 258.0 42.52 39.20 29.43 | 1.61 35.60
1300 7.04 264.7 24.82 58.00 1992 | 194 50.50

Table VII contains a summary of the inert and fatigue
parameters from the analysis of the soda lime glass data.
Table VIII contains a summary of the inert and fatigue param-
eters from the analysis of the sintered alpha silicon carbide data.

The theoretical development and experimental applications
presented indicate that the general equation (66) or (73) should
be applied to obtain the fatigue parameters when all the speci-
men rupture data are used. For the median values, equation (66)
was used in preference to equation (74).

Conclusions

A reliability analysis of monolithic structural ceramics
depends on material inert and fatigue parameters obtained from
fast-fracture and time-dependent stress rupture data. Integrated
design computer programs such as CARES/LIFE (Ceramics
Analysis and Reliability Evaluation of Structures LIFE Predic-
tion Program) use analytical methods such as those presented
in this report to estimate material parameters and subsequently
determine the time-dependent reliability of complex structural
ceramic components.

For fast-fracture reliability analysis, specimen rupture data
are utilized to determine the inert material Weibull parameters.
In the examples presented, the least-squares best-fit (LSBF)
and maximum likelihood estimation (MLE) methods were
applied to obtain the material inert parameters for soda lime
glass ring-on-ring and sintered alpha silicon carbide O-ring and
C-ring specimens. Simulations have shown that the standard
deviation for the MLE method is smaller than that for the LSBFF
method. The direct relationship of the standard deviation to the
preciseness of the value calculated suggests that the MLE
method is preferred. However, all experimental data reflect
some degree of error as well as flaw variability. Furthermore,

the two-parameter Weibull distribution is assumed adequate
and the effect of the shear stress distribution in the flexure test
bar is assumed negligible. With the many apparent uncertain-
ties, both methods (MLE and LSBF) are presumed acceptable.

For time-dependent reliability analysis, the material fatigue
parameters, in addition to the inert Weibull parameters, must be
evaluated. In the examples presented, dynamic fatigue data are
utilized in conjunction with known inert parameters
(obtained via the LSBF and/or MLE methods) to generate
material fatigue parameters for the soda lime glass and SASC.
Both examples included illustrate the successful use of the
LSBF method to determine the fatigue parameters. However, -
the MLE method applied to the dynamic fatigue soda lime glass
data from ring-on-ring specimens did not converge to a solu-
tion. A third approach, the median deviation method (MD), was
also successfully used in conjunction with the dynamic fatigue
data to obtain the cumulative distribution curve for the soda
lime glass.

A comparison of results obtained for different models
(Weibull and Batdorf) is given. Different models resulted in
different equations for the effective area and fatigue param-
eters. The median deviation method was applied to the dynamic
fatigue data to obtain a qualitative estimate of the Weibull
modulus, exponential fatigue parameter, and the product
parameter. Although these results are sufficient to define the
probability distribution function of the test data, the individual
values (scale factor and fatigue constant) comprising the prod-
uct parameter are necessary for life prediction.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, September 7, 1995
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